

 $\models \Rightarrow \vdash$

Completeness

PHIL 50 - Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 4 — Monday Class - Soundness and Completeness

Derivability: ⊢

 $\vdash \psi$ *iff* there is a derivation of ψ in which all assumptions are canceled.

 $\phi_1, \phi_2, ..., \phi_k \vdash \psi$ *iff* there is a derivation of ψ from assumptions $\phi_1, \phi_2, ..., \phi_k$

A derivation is a tree-like arrangement of formulas which obeys the derivation rules we studied during <u>Week 3</u> of the course.

Logical Consequence: =

 $\models \psi \qquad iff$ all valuation V's make ψ true

 $\phi_1, \phi_2, ..., \phi_k \vDash \psi$ *iff* all valuations *V*'s that make $\phi_1, \phi_2, ..., \phi_k$ true make also ψ true

We studied the notion of logical consequence during <u>Week 2</u> of the course

Two (Logical) Ways to Identify Good Arguments

Why Does the SOUNDNESS of Propositional Logic Matter?

$$\phi_1, \phi_2, ..., \phi_k \vdash \psi$$

SOUNDNESS

 $\phi_1, \phi_2, \ldots, \phi_k \vDash \psi$

Soundness as "Semantic Check"

How do we know that the derivation rules we have chosen are **good rules**?

Soundness guarantees that the **derivation rules** we have chosen are **truth preserving** (i.e. they always bring us from true premises to true conclusions)

Derivations rules

 $\phi_1, \phi_2, \dots, \phi_k \vdash \psi \\ \psi \\ \phi_1, \phi_2, \dots, \phi_k \vDash \psi$

The Example of Rule RAA

What Happens if We Allow for **Three Truth Values**?

An Example: Is RAA Still Good?

<u>Upshot</u>: Soundness is not Absolute; it is Relative to a Given Semantics

Why Does the **COMPLETENESS** of Propositional Logic Matter?

$$\phi_1, \phi_2, ..., \phi_k \vdash \psi$$

 $(completeness)$
 $\phi_1, \phi_2, ..., \phi_k \vDash \psi$

The Clever Is Reduced to the Automatic

Completeness of propositional logic allows ut to reduce a task that requires some **cleverness** (i.e. constructing derivations) with a task that is **completely automatic** (i.e. constructing truth-tables)

Is This Formula Derivable?

By the <u>truth table method</u> we know that $\models ((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$ and by <u>completeness</u> we know that $\vdash ((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$

Can You Find the Derivation?

The Power of Completeness - if \models then \vdash

How do we know that the derivation rules we have chosen are **ALL the derivations rules we need**? Maybe we need more?

Completeness guarantees that the derivation rules we have chosen are **ALL the derivation rules we need**

All possible Finite logical number of derivations consequences rules

Summary of Soundness and Completeness

Soundness guarantees that the **derivation rules** we have chosen are good rules insofar as they are **truth-preserving** (i.e. they always bring us from true premises to true conclusions)

Completeness guarantees that the **derivation rules** we have chosen are **ALL the derivation rules we need**. No extra derivation rules are needed.

Two Equivalent Formulations

How Do We Prove Soundness and Completeness?

You will have to take a more advanced logic course (e.g. PHIL 150 or PHIL 151) to see how the proof goes.

A set
$$\Gamma = \{\phi_1, \phi_2, ..., \phi_k\}$$
 is consistent
iff
 $\phi_1, \phi_2, ..., \phi_k \nvDash \bot$

Completeness, Soundness and Consistency

To Establish an IFF-Claim We Should Prove Both Directions

If *COMPLETENESS* and SOUNDNESS hold, then the set $\Gamma = \{\phi_1, \phi_2, ..., \phi_k\}$ is consistent

there is a valuation V that makes all formulas in Γ true

PROOF:

Suppose $\Gamma = \{\phi_1, \phi_2, ..., \phi_k\}$ is consistent, which means that ϕ_1 , ϕ_2 , ..., $\phi_k \nvDash \bot$.

By completeness, it follows that $\phi_1, \phi_2, ..., \phi_k \nvDash \bot$.

Now, ϕ_1 , ϕ_2 , ..., $\phi_k \nvDash \bot$ means that there is a valuation V such that V makes true ϕ_1 , ϕ_2 , ..., ϕ_k and V does not make true \bot .

So, there is a V that makes true all formulas in Γ .

If *COMPLETENESS and SOUNDNESS* hold, then the set $\Gamma = \{\phi_1, \phi_2, ..., \phi_k\}$ is consistent

there is a valuation V that makes all formulas in Γ true

PROOF:

Suppose there is a V that makes true all formulas in Γ .

By definition V does not make \perp true.

So, there is a V that makes true all formulas in Γ and does not make \perp true. In other words, ϕ_1 , ϕ_2 , ..., $\phi_k \nvDash \perp$.

By soundness, ϕ_1 , ϕ_2 , ..., $\phi_k \nvDash \bot$, so Γ is consistent.